A smallest graph of girth 10 and valency 3

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the smallest 3-cop win graph

In the game of cops and robbers on a graph G = (V,E), k cops try to catch a robber. On the cop turn, each cop may move to a neighboring vertex or remain in place. On the robber’s turn, he moves similarly. The cops win if there is some time at which a cop is at the same vertex as the robber. Otherwise, the robber wins. The minimum number of cops required to catch the robber is called the cop num...

متن کامل

The Smallest Cubic Graphs of Girth Nine

We describe two computational methods for the construction of cubic graphs with given girth. These were used to produce two independent proofs that the (3, 9)-cages, defined as the smallest cubic graphs of girth 9, have 58 vertices. There are exactly 18 such graphs. We also show that cubic graphs of girth 11 must have at least 106 vertices and cubic graphs of girth 13 must have at least 196 ver...

متن کامل

The Petersen graph is the smallest 3-cop-win graph

In the game of cops and robbers on a graph G = (V,E), k cops try to catch a robber. On the cop turn, each cop may move to a neighboring vertex or remain in place. On the robber’s turn, he moves similarly. The cops win if there is some time at which a cop is at the same vertex as the robber. Otherwise, the robber wins. The minimum number of cops required to catch the robber is called the cop num...

متن کامل

A Small Trivalent Graph of Girth 14

We construct a graph of order 384, the smallest known trivalent graph of girth 14. AMS Subject Classifications: 05D25, 05D35 In this note we use a construction technique that can be viewed as a kind of generalized Cayley graph. The vertex set V of such a graph consists of the elements in multiple copies of some finite group G. The action of G on V is determined by the regular action on each of ...

متن کامل

On the girth of the annihilating-ideal graph of a commutative ring

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1980

ISSN: 0095-8956

DOI: 10.1016/0095-8956(80)90046-5